Answer:
Option C
Explanation:
Given that, power of lamp , P=300 W
distance of lamp from sensor , d=10m
radius of sensor opening , r=1cm, wavelength of light emitted from photodiode, $\lambda$=660 nm and exposure time, t= 100 ms=$100 \times 10^{-3}$ s
Energy of photons , $E= \frac{hc}{\lambda}$
Putting the given values , we get
$\Rightarrow$ $E=\frac{6.6\times 10^{-34}\times 3\times10^{8}}{660 nm}=3 \times 10^{-19}$
The area of of exposure of lamp at a radius of 10 m
$A_{0}$ =$ 4 \pi r^{2}$= $4 \pi \times 10^{2} m^{2}$
Similarly, The area of sensor
A's=$\pi r^{2}$= $\pi \times (10^{-2})^{2}$= $\pi \times 10^{-4} m^{2}$
Energy emitted by lamp in exposure time,
$E_{0}$ = power of lamp (p) x exposure time (t)
$E_{0} =300 \times 100 \times 10^{-3}$ =3 J
So, the number of photons entering to sensor is given by
$N= \frac{E_{0}}{E}\times\frac{A'_{s}}{A_{0}}$
=$\frac{30}{3\times 10^{-19}}\times\frac{\pi\times 10^{-4} }{4\pi\times 10^{2}}$
$\Rightarrow$ N=$2.5 \times 10^{13}$
So, the correct option is (C)